- Как сделать перевод числа из любой системы в десятичную
- Как сделать перевод из десятичной системы счисления в другую
- Как сделать перевод числа из двоичной системы счисления в другую
- Как сделать перевод числа из любой системы счисления в двоичную
Уточнение 1
Чтобы перевести число из одной системы счисления в другую, на первом этапе нужно преобразить его в позиционную систему счисления по целосчислительному основанию 10, а уже после в нужную систему.
Если в технике для вычислений используется машинная арифметика, основная роль отводится переводу чисел из одной системы в другую. Укажем главные принципы таких операций:
- Если число из позиционной системы счисления с основанием 2 переводится в позиционную систему счисления по целосчислительному основанию 10, потребуется представить двоичное число как алгебраическую сумму нескольких одночленов, при этом каждый элемент должен быть произведением цифры числа и соответствующей степени числа основания, в конкретном случае 2. Следующий этап - вычислить многочлен согласно правилу десятичной арифметики:
X_2=A_n \cdot 2 {n-1} + A_{n-1} \cdot 2 {n-2} + A_{n-2} \cdot 2 {n-3} + ... + A_2 \cdot 2 1 + A_1 \cdot 2 0.
Не нашли то, что искали?
Попробуйте обратиться за помощью к преподавателям
- Для перевода числа из позиционной системы счисления по целосчислительному основанию 10 в позиционную систему счисления с основанием 2, потребуется поделить его на 2, до того момента, когда окончательный результат не будет меньше или равен 1. Число в позиционной системе счисления с основанием 2 - последовательность итога деления и остатков от деления в обратном порядке.
- Для перевода числа из позиционной системы счисления по целосчислительному основанию 10 в позиционную целочисленную систему счисления с основанием 8, потребуется поделить его на 8, до того момента, когда окончательный результат не будет меньше или равен 8. Число в позиционной целочисленной системе счисления с основанием 8 представляется, как последовательность цифр финального деления и остатков от деления в обратном порядке.
- Для перевода числа из позиционной системы счисления по целосчислительному основанию 10 в позиционную целочисленную систему счисления с основанием 16, потребуется поделить его на 16, до того момента, когда окончательный результат не будет меньше или равен 16. Число в позиционной целочисленной системе счисления с основанием 16 представляется, как последовательность цифр финального деления и остатков от деления в обратном порядке.
- Для перевода числа из позиционной системы счисления по целосчислительному основанию 10 в недесятичную, нужно дробную часть числа последовательно умножать на основание той системы, в которую число требуется перевести. Дробь в новой системе представляется, как целые части произведений, начиная с первого.
Может возникнуть проблема, когда окончательный результат будет равен бесконечной (периодической) дроби в недесятичной системе счисления. Тогда количество знаков в дроби новой системы зависит от необходимой точности. Стоит отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.
Сложно разобраться самому?
Попробуйте обратиться за помощью к преподавателям
- Для перевода числа из позиционной системы счисления по целосчислительному основанию 2 в позиционную целочисленную систему счисления с основанием 8, его нужно разложить тройки цифр, где началом послужит младший разряд, и если есть необходимость дополнив старшую триаду нулями, после чего каждую тройку заменить цифрой позиционной целочисленной системы счисления с основанием 8 согласно таблице.
- Для перевода числа из позиционной системы счисления по целосчислительному основанию 2 в позиционную целочисленную систему счисления с основанием 16, его нужно разложить на четверки цифр, где началом послужит младший разряд, и если есть необходимость дополнив старшую триаду нулями, после чего каждую тетраду заменить цифрой позиционной целочисленной системы счисления с основанием 16 согласно таблице.
- Для перевода числа из позиционной системы счисления по целосчислительному основанию 8 в позиционную целочисленную систему счисления с основанием 2 нужно каждую цифру заменить на эквивалентную ей двоичной триадой, как в таблице.
- Для перевода числа из позиционной системы счисления по целосчислительному основанию 16 в позиционную целочисленную систему счисления с основанием 2, нужно каждую цифру заменить на эквивалентную ей двоичной тетрадой, как в таблице.
- Если число переводится из позиционной системы счисления по целосчислительному основанию 8 в позиционную целочисленную систему счисления с основанием 16, и наоборот, нужно сделать промежуточный перевод чисел в позиционную систему счисления по целосчислительному основанию 2.